Opposition-Based Barebones Particle Swarm for Constrained Nonlinear Optimization Problems
نویسندگان
چکیده
This paper presents a modified barebones particle swarm optimization OBPSO to solve constrained nonlinear optimization problems. The proposed approach OBPSO combines barebones particle swarm optimization BPSO and opposition-based learning OBL to improve the quality of solutions. A novel boundary search strategy is used to approach the boundary between the feasible and infeasible search region. Moreover, an adaptive penalty method is employed to handle constraints. To verify the performance of OBPSO, a set of well-known constrained benchmark functions is used in the experiments. Simulation results show that our approach achieves a promising performance.
منابع مشابه
Using Opposition-based Learning with Particle Swarm Optimization and Barebones Differential Evolution
Particle swarm optimization (PSO) (Kennedy & Eberhart, 1995) and differential evolution (DE) (Storn & Price, 1995) are two stochastic, population-based optimization methods, which have been applied successfully to a wide range of problems as summarized in Engelbrecht (2005) and Price et al. (2005). A number of variations of both PSO and DE have been developed in the past decade to improve the p...
متن کاملTrim and Maneuverability Analysis Using a New Constrained PSO Approach of a UAV
Performance characteristic of an Unmanned Air Vehicle (UAV) is investigated using a newly developed heuristic approach. Almost all flight phases of any air vehicle can be categorized into trim and maneuvering flights. In this paper, a new envelope called trim-ability envelope, is introduced and sketched within the conventional flight envelope for a small UAV. Optimal maneuverability of the inte...
متن کاملConstrained Optimization by Combining the α Constrained Method with Particle Swarm Optimization
Recently, Particle Swarm Optimization (PSO) has been applied to various application fields. In this paper, a new optimization method “α Constrained Particle Swarm Optimizer (αPSO)”, which is the combination of the α constrained method and PSO, is proposed. The αPSO is applied to several test problems such as nonlinear programming problems and problems with non-convex constraints. It is compared...
متن کاملA Particle Swarm Optimization Algorithm for Mixed-Variable Nonlinear Problems
Many engineering design problems involve a combination of both continuous anddiscrete variables. However, the number of studies scarcely exceeds a few on mixed-variableproblems. In this research Particle Swarm Optimization (PSO) algorithm is employed to solve mixedvariablenonlinear problems. PSO is an efficient method of dealing with nonlinear and non-convexoptimization problems. In this paper,...
متن کاملMultiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کامل